Fully automated AI-powered microbiological analysis

Counting bacterial colonies is a fundamental task in microbiology, which is currently performed manually in most laboratories. This is a time-consuming and error-prone process, which requires a trained professional.

As one of our internal R&D projects, partially funded by The National Centre for Research and Development, we work on a library for automatic identification and classification of bacterial colonies based on RGB images of Petri dishes. Our deep learning methods allow us to detect and count different types of microorganisms with high accuracy and can be easily integrated with lab automation software or used as a standalone application.

In a nutshell

  • Automated microbiological analyses
  • High-precision colony counting
  • Easily expandable for new microorganisms
  • Accurate microorganisms classification
  • QA process optimization
  • Tedious work done for you

A flexible library for microbiological analysis

A flexible library for microbiological analyses will be created as a result of this R&D project. It is going to be easily customizable for new types of microorganisms, agar plates or camera parameters. It is intended to work in different scenarios:

– a standalone application for analysing already collected images;
– an application connected to a simple image acquisition set consisting of a camera mounted on a tripod (a standard set for a laboratory available on the market, such as the ones produced by Carl Zeiss);
– a library integrated with existing advanced systems for automating microbiological laboratory environment (i.e. MicroTechniX).

The areas of application include but not limited to healthcare, pharmaceutical, food, cosmetics, and veterinary industries.

Deep learning methods for microbiological tasks

To assure the high accuracy and generalization capabilities of developed algorithms the state-of-the-art deep learning methods are used, which are known to obtain the best results for the majority of computer vision tasks. More precisely, the solution is based on convolutional neural networks in a combination with suitable image processing pipeline to maximize the precision of detecting, classifying, and counting different species of microorganisms.

The crucial ingredient for deep learning-based solutions is data. That is why in collaboration with microbiology experts from the University of Wroclaw we are collecting thousands of carefully annotated images of Petri dishes with different bacterial species. By varying photos acquisition settings (e.g. lighting conditions, camera parameters etc.) we aim to make our algorithms robust to the variations in the image data collection process, so our solution can be applied to a variety of laboratory settings.

Let’s talk and see if we are a match for your next IT project.
Tomasz Kowalczyk CEO NeuroSYS
Tomasz Kowalczyk
CEO at NeuroSYS
icon
Done!
Thank you for your application!
icon
Let's get in touch!
We want to get to know you a little bit, but we need some help from your side. Let's start with filling gaps below.
Full name
Please provide us with your full name
Email
Please provide us your current Email
Telephone
Please provide us with your Phone number
Your LinkedIn profile
Please show us your professional social side :)
Link to your portfolio / GitHub
Please insert your Portfolio / GitHub URL correctly
Message
Nothing to say? Maybe just a little bit? Even "Hi" will work - thanks!
CV file
Please upload your CV
Select file
Please choose one of the following
I hereby authorize the processing of my personal data included in this form for the present recruitment-related purposes by NeuroSYS Sp. z o.o. (Rybacka 7 Street, 53-565 Wrocław) (in accordance with the General Data Protection Regulation (EU) 2016/679 of 27.04.2018 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, as well as repealing Directive 95/46/EC (Data Protection Directive)). I acknowledge that submitting my personal data is voluntary, I have the right to access my data and rectify it.
Read and accept
I hereby authorize the processing of my personal data included in my job application for the needs of future recruitment processes by NeuroSYS Sp. z o.o. (Rybacka 7 Street, 53-565 Wrocław).
Read and accept