An idea behind the project

Monitoring shrimp farms is crucial to deliver shrimps of satisfactory quality to customers, and to manage sales and contracting more effectively. Some of the indicators include shrimps’ growth rates, population size, biomass level, and health condition. However, current monitoring depends on manual sampling, which is susceptible to inaccurate measurements, stress brought on shrimps, and their physical damage.

Therefore, our goal was to develop a system to automatically estimate the number of shrimps without a need to remove them from their environment. The Proof of Concept is based on the Computer Vision deep learning models that are trained to predict the number of shrimps on an image obtained from an industrial shrimp farm setting.

In a nutshell

  • Data labeling and exploratory data analysis
  • Training, selection, and validation of object detector models
  • Applying the density maps approach to estimate the number of shrimps
  • Implementation of custom neural network layers from scratch to boost models’ performance
  • Additional evaluation of out-of-distribution, independent test dataset
  • Online visualization of models’ inference via the Streamlit app

More about the object counting system

Object counting on data gathered during long periodical intervals is a perfect task to automate using Computer Vision methods. Our system alleviates tedious manual shrimp counting, allowing for more accurate automated count prediction. In our Proof of Concept, we focused on algorithmic and Machine Learning aspects. We trained and tested three deep learning model types, namely: two-stage detector model (Faster R-CNN), one-stage detector model (YOLOv5), and Density Maps autoencoder models (based on U2-Net).

We put special emphasis on the quality of the labeling process and gathering a well-diversified dataset from the client’s shrimp farm. It contained images under different conditions, such as shrimp density, lightning, shrimp color and camera distance from farming tanks. We discovered that bounding-box detectors performed better than the density-based approach, with YOLOv5 and Faster-RCNN achieving a satisfactory level of relative miscount error (around 6%).

Additionally, we found out that the YOLOv5 model generalizes best to the out-of-distribution samples. Images with high density and object overlaps, where the count could exceed 200 objects per image, were particularly challenging. To mitigate this obstacle, we trained models with more aggressive augmentation techniques. The approach led to satisfactory results even with the problematic samples.

 

object counting models

Faster R-CNN detector model

The result of object counting

Our solution counts shrimps at a satisfactory level and allows for a more accurate estimation of biomass production. These trained models will scale well into new environments and can be applied to different farm locations. Our work encouraged the client to take further steps and move from the initial proof of concept to a commercializable application.

Moreover, our concrete results in the shrimp counting domain open new promising research paths for further production process adjustments.

The project was financed by BMEL, the Ministry of Food Policy and Agriculture in Germany.

object counting system

object counting system computer-vision based

detector model in object counting

Let’s talk and see if we are a match for your next IT project.
Tomasz Kowalczyk CEO NeuroSYS
Tomasz Kowalczyk
CEO at NeuroSYS
icon
Done!
Thank you for your application!
icon
Let's get in touch!
We want to get to know you a little bit, but we need some help from your side. Let's start with filling gaps below.
Full name
Please provide us with your full name
Email
Please provide us your current Email
Telephone
Please provide us with your Phone number
Your LinkedIn profile
Please show us your professional social side :)
Link to your portfolio / GitHub
Please insert your Portfolio / GitHub URL correctly
Message
Nothing to say? Maybe just a little bit? Even "Hi" will work - thanks!
CV file
Please upload your CV
Select file
Please choose one of the following
I hereby authorize the processing of my personal data included in this form for the present recruitment-related purposes by NeuroSYS Sp. z o.o. (Rybacka 7 Street, 53-565 Wrocław) (in accordance with the General Data Protection Regulation (EU) 2016/679 of 27.04.2018 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, as well as repealing Directive 95/46/EC (Data Protection Directive)). I acknowledge that submitting my personal data is voluntary, I have the right to access my data and rectify it.
Read and accept
I hereby authorize the processing of my personal data included in my job application for the needs of future recruitment processes by NeuroSYS Sp. z o.o. (Rybacka 7 Street, 53-565 Wrocław).
Read and accept